An Expeditious Synthesis of 1,2,3,4-Tetrahydro-1,1-dimethylphenanthrenes

Sukumar Ghosh, Bimal K. Banik and Usha Ranjan Ghatak*
Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta - 700 032, India

Abstract

A simple convergent and general method has been developed for the synthesis of 1,2,3,4-tetrahydro-1,1-dimethylphenanthrenes 4a-f and a few 1,2,3,4,9,10-hexahydro-1,1-dimethylphenanthrenes 5c-f by polyphosphoric acid catalysed reaction of the easily accessible 2-(2-arylethyl)-3,3-dimethylcyclohexanones $3 \mathbf{a}-\mathbf{f}$. The tetrahydrophenanthrenes $4 \mathbf{a}, \mathbf{c}, \mathbf{e}, \mathbf{f}$ have been converted to the respective benzylic ketones $\mathbf{6 a , c}, \mathbf{e}$,f by oxidation with pyridinium chlorochromate and Celite.

The 1,1-dimethyltetrahydrophenanthrenes $\mathbf{4 a}{ }^{1,2}$ and $\mathbf{4 b}{ }^{\mathbf{3}}$ and $\mathbf{4 c},{ }^{4}$ key intermediates used in a number of the total syntheses of miltirone 1^{5} and tanshinone IIA ${ }^{6} 2$, respectively, two important members of a large group of highly bio-active abietane diterpenoid quinones ${ }^{2}$ isolated from the roots of Salvia miltiorrhiza Bunge (Danshen), have been prepared by a lengthy sequence of reactions from substituted benzene and naphthalene derivatives. We describe now a simple convergent and a highly efficient general synthetic route to $\mathbf{4 a - c}$, simonellite $\mathbf{4 d}^{7}$ and the related tetrahydrophenanthrenes $\mathbf{4 e}, \mathbf{f}$ through the easily accessible cyclohexanone derivatives $\mathbf{3 a}-\mathbf{f}$, used in our recent synthesis ${ }^{8} 12$ of some diterpenoids.

1

3

5
4a, 6a;
$R^{1}=H, R^{2}=\mathrm{Pr}^{i}, R^{3}=\mathrm{OMe}$
$3 b, 4 b ; \quad R^{1}=R^{3}=O M e, R^{2}=H$
$3 c, 4 c, 5 c, 6 c ; R^{1}=R^{2}=H, R^{3}=O M e$
3d, 4d, 5d; $\quad R^{1}=R^{3}=H, R^{2}=P r^{i}$
3e, 4e, 5e, 6e; $R^{1}=R^{3}=H, R^{2}=O M e$
$3 f, 4 f, 5 f, 6 f ; \quad R^{1}=R^{2}=R^{3}=H$
\dagger Since the reaction was carried out under N_{2} the dehydrogenation during the cyclisations possibly involved oxygen dissolved in the reaction medium. However, for a given substrate, the yield of the tetrahydro product does not parallel the length of the reaction in PPA.

Polyphosphoric acid induced reactions of $\mathbf{3 a}{ }^{8}$ and $\mathbf{3 b}{ }^{\mathbf{1 2}}$ in boiling toluene directly afforded $\mathbf{4} \mathbf{a}^{1,2}$ and $\mathbf{4 b},{ }^{3}$ in 75 and 79% yields respectively, as the only isolable products by concomitant cyclodehydration and aromatisation. ${ }^{13}$ Under the similar conditions, however, the ketones $\mathbf{3 c},{ }^{9} \mathbf{3 d},{ }^{11} \mathbf{3 e}{ }^{10}$ and $\mathbf{3 f}{ }^{9}$ gave the respective tetrahydrophenanthrenes $4 \mathbf{c},{ }^{3} 4 \mathbf{d},{ }^{7} 4 \mathbf{e}^{14}$ and $4 f$ in high yields \dagger along with minor amounts of the corresponding hexahydrophenanthrenes $5 \mathbf{c}-\mathbf{f}$, separated by column chromatography. Each of these mixtures on dehydrogenation directly with palladium-charcoal in boiling xylene led to the corresponding tetrahydrophenanthrenes in $82-95 \%$ yields.

The ketones $6 a^{2,15}$ and $6 \mathbf{e},{ }^{16}$ prepared by a lengthy sequence of reactions, have been transformed recently to some diterpenoids by a reductive angular methylation reaction. ${ }^{15,16}$ We have found that the easily accessible tetrahydrophenanthrenes $\mathbf{4 a}, \mathbf{4 c}, \mathbf{4 e}$ and $\mathbf{4 f}$ undergo smooth benzylic oxidation ${ }^{17}$ with pyridinium chlorochromate (PCC)-Celite in dichloromethane to afford the respective ketones $6 \mathbf{6}, \mathbf{6 c}$, $\mathbf{6 e}$ and $\mathbf{6 f}$ in $82-85 \%$ yields.

In conclusion, in the present work a simple convergent and general synthetic route has been developed for some key hydrophenanthrene intermediates for the synthesis of diterpenoids.

Experimental

IR spectra of solids (K Br) and liquids (film) were recorded on a Perkin-Elmer model PE 298 instrument. UV spectra were recorded on a Beckman DU spectrometer for solutions in ethanol (95%). ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 200 MHz on an XL-200 spectrometer for solutions in CDCl_{3} with SiMe_{4} as internal standard, J values are given in Hz . Analytical GLC was performed on a Shimadzu GC-9A model with a flame-ionisation detector employing a $1.5 \% \mathrm{OV}-17(6.5 \mathrm{ft} . \times 0.25 \mathrm{in})$ column with N_{2} as the carrier gas. Column chromatography was performed on neutral alumina (Brockmann Grade 1, of BDH, India) or silica gel [Glaxo Laboratories (India) Ltd.]. Light petroleum refers to the fraction of b.p. $40-60^{\circ} \mathrm{C}$ unless otherwise stated. Ether refers to diethyl ether. Elemental analyses were performed by Mr. P. P. Bhattacharya and S. K. Sarkar of this laboratory.

Cyclisation of 3a to 4a.-To a well-stirred mixture of polyphosphoric acid (PPA) prepared from orthophosphoric acid ($15 \mathrm{~cm}^{3}, 85 \%$) and phosphorus pentoxide (23 g) at $115-$ $120^{\circ} \mathrm{C}$ (bath temp.) a solution of ketone $3 \mathbf{a}^{8}(1 \mathrm{~g}, 3.30 \mathrm{mmol})$ in toluene ($10 \mathrm{~cm}^{3}$) was added, stirring at the same temperature was continued for 10 h . The red mixture was decomposed with crushed ice and the organic matter was extracted with ether. The ethereal extracts were washed thoroughly with water and 3% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent afforded 1,2,3,4-tetrahydro-7-isopropyl-6-methoxy-1,1-
dimethylphenanthrene $\mathbf{4 a}$ ($700 \mathrm{mg}, 75 \%$), as a white solid, m.p. $83-84^{\circ} \mathrm{C}$ (from methanol) (lit.,' m.p. 83-85 ${ }^{\circ} \mathrm{C}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1627$ and 1605; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 238(\log \varepsilon 4.92) ; \delta 1.30(6 \mathrm{H}, \mathrm{d}, J$ 7, CHMe e_{2}, $1.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.70-1.79\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.92-$ $2.04\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.07\left(2 \mathrm{H}, \mathrm{t}, J 7,4-\mathrm{H}_{2}\right), 3.35-3.50(1 \mathrm{H}, \mathrm{m}$, CHMe ${ }_{2}$), 3.98 ($3 \mathrm{H}, \mathrm{s}$, ArOMe), 7.22 ($1 \mathrm{H}, \mathrm{s}, 5-\mathrm{ArH}$), $7.40(1 \mathrm{H}, \mathrm{d}$, $J 8,10-\mathrm{ArH}$) and $7.66-7.75(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{ArH}$ and $9-\mathrm{ArH})\left[\right.$ lit., ${ }^{1}$ $\delta\left(\mathrm{CDCl}_{3} ; 60 \mathrm{MHz}\right) 2.5-3.0(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.15(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $6.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right), 7.05\left(2 \mathrm{H}, \mathrm{t}, J 6\right.$, benzylic $\left.\mathrm{CH}_{2}\right), 8.25$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$ and 8.7-8.8 (12 H, m, $\left.4 \times \mathrm{Me}\right)$].

Cyclisation of $\mathbf{3 b}$ to $\mathbf{4 b}$. The ketone $\mathbf{3 b}{ }^{12}(1 \mathrm{~g}, 3.44 \mathrm{mmol})$ was converted in the same way as described for 4 a into $1,2,3,4$ -tetrahydro-5,7-dimethoxy-1,1-dimethylphenanthrene $\mathbf{4 b}$ which was obtained as a white solid ($735 \mathrm{mg}, 79 \%$), m.p. $159-160^{\circ} \mathrm{C}$ (light petroleum) (lit., ${ }^{3}$ m.p. $158{ }^{\circ} \mathrm{C}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1626$ and 1600 ; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 238(\log \varepsilon 4.84)\left[\mathrm{lit}.{ }^{3}{ }^{3} \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 238\right.$, 284, 295, 331)]; $\delta 1.34\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.64-1.78(2 \mathrm{H}, \mathrm{m}$, $\left.2-\mathrm{H}_{2}\right), 1.90-2.02\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.02\left(2 \mathrm{H}, \mathrm{t}, J 7,4-\mathrm{H}_{2}\right), 3.94(3 \mathrm{H}$, s, ArOMe), 3.96 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}$), 6.50 ($1 \mathrm{H}, \mathrm{brs}, 5-\mathrm{ArH}$), 6.84 (1 $\mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{ArH}), 7.38(1 \mathrm{H}, \mathrm{d}, J 8,10-\mathrm{ArH})$ and $8.0(1 \mathrm{H}, \mathrm{d}, J 8$, 9-ArH).

Cyclisation of 3c to 4c and 1,2,3,4,9,10-Hexahydro-6-methoxy-1,1-dimethylphenanthrene 5 c .-To a well stirred mixture of polyphosphoric acid (PPA) prepared from orthophosphoric acid ($15 \mathrm{~cm}^{3}, 85 \%$) and phosphorus pentoxide (23 g) at $115-$ $120{ }^{\circ} \mathrm{C}$ (bath temp.) a solution of ketone $3 c^{9}(1 \mathrm{~g}, 3.84 \mathrm{mmol})$ in toluene ($10 \mathrm{~cm}^{3}$) was added, stirring at the same temperature was continued for 10 h . The red mixture was decomposed with crushed ice and the organic matter was extracted with ether. The ethereal extracts were washed thoroughly with water, 3% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent afforded a light yellow viscous liquid mixture of $4 \mathbf{c}$ and $5 \mathbf{c}$, which was chromatographed over neutral alumina (32 g) and eluted with light petroleum ($7 \times 35 \mathrm{~cm}^{3}$) to afford the title compound $5 \mathrm{c}(79 \mathrm{mg}, 8.5 \%)$, b.p. $150-155^{\circ} \mathrm{C}(1 \mathrm{mmHg})$ (Found: C, 83.95 ; $\mathrm{H}, 8.85 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}$ requires $\mathrm{C}, 84.24 ; \mathrm{H}, 9.15 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $1605 ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 206(\log \varepsilon 4.30)$ and $270(\log \varepsilon$ 4.20); $\delta 1.0\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$, $1.46-1.79(10 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}$, ArOMe) and 6.39-6.87 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Further elution with light petroleum $\left(60-80^{\circ} \mathrm{C}\right)\left(7 \times 30 \mathrm{~cm}^{3}\right)$ furnished 1,2,3,4-tetrahydro-6-methoxy-1,1-dimethylphenanthrene $\mathbf{4 c}(803 \mathrm{mg}, 87 \%)$ as a colourless oil which solidified on
 $\left.117-118.5{ }^{\circ} \mathrm{C}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1625$ and $1600 ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 236$ $(\log \varepsilon 4.54), 280(\log \varepsilon 3.64), 315(\log \varepsilon 3.08)$ and $330(\log \varepsilon$ $3.19)\left[\text { lit. }{ }^{4}\right\rangle_{\text {max }}($ EtOH $) / \mathrm{nm} 237,270$ sh, 279,289 sh, 316 and 331 $(\log \varepsilon 4.87,3.68,3.73,3.64,3.18$ and 3.31$)] ; \delta 1.37(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{2}\right), 1.71-1.80\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.92-2.03\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.08$ $\left(2 \mathrm{H}, \mathrm{t}, J 8,4-\mathrm{H}_{2}\right), 3.96(3 \mathrm{H}, \mathrm{s}$, ArOMe), $7.14(1 \mathrm{H}, \mathrm{dd}, J 8$ and 1 , $7-\mathrm{ArH}$), 7.28 ($1 \mathrm{H}, \mathrm{br}$ s, $5-\mathrm{ArH}$), 7.41 ($1 \mathrm{H}, \mathrm{d}, J 8,10-\mathrm{ArH}$), 7.64 $(1 \mathrm{H}, \mathrm{d}, J 8,8-\mathrm{ArH})$ and $7.73(1 \mathrm{H}, \mathrm{d}, J 8,9-\mathrm{ArH})$.

Conversion of $\mathbf{3 c}$ to $\mathbf{4 c}$. The crude mixture of $\mathbf{4 c}$ and $5 \mathbf{c}$ prepared by cyclisation of the cyclohexanone $3 \mathrm{c}(250 \mathrm{mg}, 0.96$ mmol) with PPA following the same procedure as described above, was dissolved in xylene ($12 \mathrm{~cm}^{3}$) and mixed with $\mathrm{Pd}-\mathrm{C}$ $(10 \%)(125 \mathrm{mg})$. The magnetically stirred mixture was refluxed for 7 h . The reaction mixture was cooled, filtered and the residue was rinsed with ether $\left(25 \mathrm{~cm}^{3}\right)$. The ether washings and the filtrate were combined and the solvent was evaporated under reduced pressure. The resulting product was purified by chromatography on neutral alumina (10 g) using light petroleum as eluent to afford $\mathbf{4 c}(217 \mathrm{mg}, 95 \%$); identical (m.p., mixed m.p., IR and ${ }^{1} \mathrm{H}$ NMR spectra and GLC) with the sample described above.
Cyclisation of 3d to 4d and 1,2,3,4,9,10-Hexahydro-7-iso-propyl-1,1-dimethylphenanthrene 5d.-The ketone $\mathbf{3 d}^{11}(1 \mathrm{~g}$, 3.67 mmol) was converted in the same way as described for 4 a
into the mixture of $\mathbf{4 d}$ and $\mathbf{5 d}$. The mixture was chromatographed over neutral alumina (32 g) and elution with light petroleum ($7 \times 30 \mathrm{~cm}^{3}$) afforded the title compound $5 \mathrm{~d}(299 \mathrm{mg}, 32 \%$), b.p. $150-155^{\circ} \mathrm{C}(1 \mathrm{mmHg})$ (Found: C, $89.85 ; \mathrm{H}, 9.95 . \mathrm{C}_{19} \mathrm{H}_{26}$ requires C, $89.70 ; \mathrm{H}, 10.30 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1605 ; i_{\text {max }}(\mathrm{EtOH}) /$ $\mathrm{nm} 214(\log \varepsilon 4.37), 221(\log \varepsilon 4.35)$ and $271(\log \varepsilon 4.21) ; \delta$ $1.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.24\left(6 \mathrm{H}, \mathrm{d}, J 6, \mathrm{CH} M e_{2}\right), 1.50-1.59(2 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}_{2}$), $1.70-1.84\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.15-2.28\left(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{2}\right), 2.32-$ $2.44\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 2.69\left(2 \mathrm{H}, \mathrm{t}, J 7,9-\mathrm{H}_{2}\right), 2.80-2.94(1 \mathrm{H}, \mathrm{m}$, CH Me_{2}), $7.02(1 \mathrm{H}, \mathrm{brs}, 8-\mathrm{ArH}), 7.09(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 6-\mathrm{ArH})$ and 7.19 ($1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{ArH}$).
Further elution with light petroleum $\left(60-80^{\circ} \mathrm{C}\right)\left(7 \times 35 \mathrm{~cm}^{3}\right)$ furnished 1,2,3,4-tetrahydro-7-isopropyl-1,1-dimethylphenanthrene $\mathbf{4 d}(537 \mathrm{mg}, 58 \%)$ as a colourless oil which solidified on standing, m.p. $59{ }^{\circ} \mathrm{C}$ (from ethanol) (lit., ${ }^{7}$ m.p. $58-59{ }^{\circ} \mathrm{C}$); $v_{\text {max }} / \mathrm{cm}^{-1} 1627$ and $1605 ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 231(\log \varepsilon 4.91)$ and $279\left(\log\right.$ \& 3.79) [lit., ${ }^{7} i_{\max } 233,271$ sh, 278, 291 sh, 310, 317 and 324 ($\varepsilon 24300,6400,3800,750,250$ and 880)]; $\delta 1.34$ (6 $\left.\mathrm{H}, \mathrm{d}, J 6, \mathrm{CH} M e_{2}\right), 1.37\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.70-1.80\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right)$, $1.90-2.02\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.03-3.16\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right.$ and $\left.4-\mathrm{H}_{2}\right)$, 7.40-7.52 ($2 \mathrm{H}, \mathrm{m}, 6$ - and 8-ArH), $7.60-7.67(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and}$ $9-\mathrm{ArH})$ and $7.94(1 \mathrm{H}, \mathrm{d}, J 9,10-\mathrm{ArH})$.

Conversion of $\mathbf{3 d}$ to $\mathbf{4 d}$. The crude mixture of $\mathbf{4 d}$ and $\mathbf{5 d}$ obtained from the cyclisation of $\mathbf{3 d}$ ($250 \mathrm{mg}, 0.91 \mathrm{mmol}$) as described above was converted in the same way as described for 3c into 4 d ($190 \mathrm{mg}, 82 \%$), identical (m.p., mixed m.p., IR and ${ }^{1} \mathrm{H}$ NMR spectra and GLC) with the sample described above.

Cyclisation of $\mathbf{3 e}$ to $\mathbf{4 e}$ and 1,2,3,4,9,10-Hexahydro-7-methoxy1,1 -dimethylphenanthrene 5 e . -The ketone $3 \mathrm{e}^{10}(1 \mathrm{~g}, 3.84 \mathrm{mmol})$ was converted in the same way as described for 3a into the mixture of 4 e and 5 e . The mixture was chromatographed over neutral alumina (32 g) and elution with light petroleum ($6 \times 35 \mathrm{ml}$) afforded $\mathbf{5 e}(232 \mathrm{mg}, 25 \%)$ as a colourless oil which solidified on standing, m.p. $49-50^{\circ} \mathrm{C}$ (from methanol) (Found: C, $83.95 ; \mathrm{H}, 9.35 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}$ requires $\mathrm{C}, 84.24 ; \mathrm{H}, 9.15 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1605 ; i_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 206(\log \varepsilon 4.30)$ and $272(\mathrm{log}$ $\varepsilon 4.20) ; \delta 1.07\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.37-2.67(10 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H}, \mathrm{s}$, ArOMe) and 6.40-7.0 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
Further elution with light petroleum $\left(60-80^{\circ} \mathrm{C}\right)\left(7 \times 30 \mathrm{~cm}^{3}\right)$ furnished $4 \mathrm{e}\left(572 \mathrm{mg}, 62 \%\right.$) as a colourless solid, m.p. $56-57^{\circ} \mathrm{C}$ (from methanol) (lit., ${ }^{14} \mathrm{~m} . \mathrm{p} .55 .5-56^{\circ} \mathrm{C}$); $v_{\max } / \mathrm{cm}^{-1} 1628$ and $1600 ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 228(\log \varepsilon 4.87) ; \delta 1.35\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$, $1.68-1.78\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.88-2.02\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.11(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.8,4-\mathrm{H}_{2}\right), 3.93(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 7.12-7.26(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{and} 8-\mathrm{ArH})$, $7.50(1 \mathrm{H}, \mathrm{d}, J 8,9-\mathrm{ArH}), 7.62(1 \mathrm{H}, \mathrm{d}, J 8,5-\mathrm{ArH})$ and $7.94(1 \mathrm{H}$, d, $J 8,10-\mathrm{ArH}$).

Conversion of $\mathbf{3 e}$ into 4 e . The crude mixture of $\mathbf{4 e}$ and 5 e obtained from the cyclisation of $3 \mathrm{e}(250 \mathrm{mg}, 0.96 \mathrm{mmol})$ was converted in the same way as described for $\mathbf{4 c}$ into $\mathbf{4 e}(196 \mathrm{mg}$, 85%), identical (m.p., mixed m.p., IR and ${ }^{1} \mathrm{H}$ NMR spectra and GLC) with the sample described above.

1,2,3,4-Tetrahydro-1,1-dimethylphenanthrene $\mathbf{4 f}$ and 1,2,3,4,9,10-Hexahydro-1,1-dimethylphenanthrene $\quad \mathbf{5 f}$.-The ketone 3 f ${ }^{10}(1 \mathrm{~g}, 4.34 \mathrm{mmol})$ was converted in the same way as described for $\mathbf{4 a}$ into the mixture of $\mathbf{4 f}$ and $\mathbf{5 f}$. The mixture was chromatographed over neutral alumina (36 g) and elution with light petroleum ($10 \times 30 \mathrm{~cm}^{3}$) afforded the pure $\mathbf{5 f}(64 \mathrm{mg}, 7 \%$), b.p. $140-145^{\circ} \mathrm{C}(1 \mathrm{mmHg})$ (Found: C, 90.3; H, 9.65. $\mathrm{C}_{16} \mathrm{H}_{20}$ requires C, $90.50 ; \mathrm{H}, 9.50 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1605 ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ $207(\log \varepsilon 4.04), 213(\log \varepsilon 4.04), 220(\log \varepsilon 4.04)$ and $268(\log$ $\varepsilon 3.80) ; \delta 1.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.50-1.60\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.70-1.84$ ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}$), 2.12-2.26 ($2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{2}$), $2.44\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right.$), $2.67\left(2 \mathrm{H}, \mathrm{t}, J 8,9-\mathrm{H}_{2}\right)$ and $7.10-7.28(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.
Further elution with light petroleum $\left(60-80^{\circ} \mathrm{C}\right)\left(7 \times 35 \mathrm{~cm}^{3}\right)$ afforded $4 \mathrm{f}(819 \mathrm{mg}, 88 \%)$ as a colourless oil, b.p. $165-170^{\circ} \mathrm{C}$ $(1 \mathrm{mmHg})$ (Found: C, $91.1 ; \mathrm{H}, 8.4 . \mathrm{C}_{16} \mathrm{H}_{18}$ requires C, $91.37 ; \mathrm{H}$,
$8.63 \%) ; v_{\max } / \mathrm{cm}^{-1} 1627$ and $1600 ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 229(\log \varepsilon$ 4.48) and $281(\log \varepsilon 3.72) ; \delta 1.37\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.72-1.80(2 \mathrm{H}$, $\left.\mathrm{m}, 2-\mathrm{H}_{2}\right), 1.92-2.01\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.14\left(2 \mathrm{H}, \mathrm{t}, J 7,4-\mathrm{H}_{2}\right)$, $7.47-7.70(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.81(1 \mathrm{H}, \mathrm{d}, J 8,10-\mathrm{ArH})$ and $8.03(1 \mathrm{H}$, d, J8, 9-ArH).

Conversion of $\mathbf{3 f}$ to $\mathbf{4 f}$. The crude mixture of $\mathbf{4 f}$ and $\mathbf{5 f}$ obtained from the cyclisation of $\mathbf{3 f}(250 \mathrm{mg}, 1.08 \mathrm{mmol})$ as described above, was converted in the same way as described for $\mathbf{4 c}$ into $\mathbf{4 f}$ ($217 \mathrm{mg}, 95 \%$), identical (IR, GLC and ${ }^{1} \mathrm{H}$ NMR spectra) with the sample described above.

Oxidation of $\mathbf{4 a}$ to $\mathbf{6 a}$.-To a solution of the phenanthrene $\mathbf{4 a}$ $(300 \mathrm{mg}, 1.06 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{ml})$, was added a finely powdered and homogenised mixture of PCC $(1.1 \mathrm{~g}, 5.10$ $\mathrm{mmol})$ and Celite $(1.1 \mathrm{~g}) .{ }^{17 a}$ The reaction mixture was stirred for 25 h at room temperature and then diluted with ether ($10 \mathrm{~cm}^{3}$) and filtered through a short pad of Celite and anhydrous magnesium sulphate. The filter cake was washed with two portions of ether $\left(10 \mathrm{~cm}^{3} \times 2\right)$ and the combined filtrate was evaporated under reduced pressure to afford $\mathbf{6 a}(258 \mathrm{mg}, 82 \%)$, as a colourless solid, m.p. $88-89^{\circ} \mathrm{C}$ (from methanol) (lit., ${ }^{2} \mathrm{~m} . \mathrm{p}$. 89-91 C): $v_{\text {max }} / \mathrm{cm}^{-1} 1672,1625$ and $1600 ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 225$ $\left.(\log \varepsilon 4.50) ; \delta 1.30(6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe})_{2}\right), 1.46\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$, $2.10\left(2 \mathrm{H}, \mathrm{t}, J 8,2-\mathrm{H}_{2}\right), 2.88\left(2 \mathrm{H}, \mathrm{t}, J 8,3-\mathrm{H}_{2}\right), 3.39-3.49(1 \mathrm{H}, \mathrm{m}$, CH Me ${ }_{2}$), $4.04(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 7.45(1 \mathrm{H}, \mathrm{d}, J 8,10-\mathrm{ArH}), 7.62$ ($1 \mathrm{H}, \mathrm{s}, 8-\mathrm{ArH}$), $7.96(1 \mathrm{H}, \mathrm{d}, J 8,9-\mathrm{ArH})$ and $8.94(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{ArH})$ [lit., ${ }^{2}{ }^{1} \mathrm{H}$ NMR: $\delta 1.29(\mathrm{~d}, J 7,6 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 2.07(\mathrm{t}, J 7,2$ H), $2.84(\mathrm{t}, J 7,2 \mathrm{H}), 3.40$ (septet, $J 7,1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 7.38,7.80$ $\left(\mathrm{AB}_{\mathrm{q}}, J 9.2 \mathrm{H}\right), 7.55(\mathrm{~s}, 1 \mathrm{H})$ and $\left.8.78(\mathrm{~s}, 1 \mathrm{H})\right]$.

1,2,3,4-Tetrahydro-6-methoxy-1,1-dimethylphenanthrene-4one $6 \mathbf{6}$.-The compound $4 \mathrm{c}(300 \mathrm{mg}, 1.25 \mathrm{mmol})$ was converted, in the same way as described for $\mathbf{6 a}$ into the title compound $\mathbf{6 c}$ ($266 \mathrm{mg}, 84^{\circ}{ }_{\circ}$), b.p. $165-170^{\circ} \mathrm{C}(0.1 \mathrm{mmHg})$ (Found: $\mathrm{C}, 80.5 ; \mathrm{H}$, 7.1. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.28 ; \mathrm{H}, 7.13 \%$); $v_{\max } / \mathrm{cm}^{-1} 1670$, 1626 and $1600: i_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 218(\log \varepsilon 4.50)$ and $247(\log \varepsilon$ $4.31) ; \delta 1.48\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 2.11\left(2 \mathrm{H}, \mathrm{t}, J 8,2-\mathrm{H}_{2}\right), 2.89(2 \mathrm{H}, \mathrm{t}$, $\left.J 8,3-\mathrm{H}_{2}\right), 4.01(3 \mathrm{H}, \mathrm{s}$, ArOMe), $7.21(1 \mathrm{H}, \mathrm{dd}, J 8$ and $1,7-\mathrm{ArH})$, $7.46(1 \mathrm{H}, \mathrm{d}, J 8,10-\mathrm{ArH}), 7.75(1 \mathrm{H}, \mathrm{d}, J 8,8-\mathrm{ArH}), 7.97(1 \mathrm{H}, \mathrm{d}, J$ $8,9-\mathrm{ArH})$ and $8.96(1 \mathrm{H}, \mathrm{d}, J 1,5-\mathrm{ArH})$.

Oxidation of $\mathbf{4 e}$ to $\mathbf{6 e}$.-The compound $\mathbf{4 e}(300 \mathrm{mg}, 1.25$ mmol) was converted in the same way as described for $\mathbf{6 a}$ into $\mathbf{6 e}$ ($269 \mathrm{mg}, 85 \%$), b.p. $160{ }^{\circ} \mathrm{C}\left(0.1 \mathrm{mmHg}\right.$) [lit., ${ }^{16}$ b.p. (bath temp.) $170 \mathrm{C} / 0.1 \mathrm{mmHg}] ; v_{\max } / \mathrm{cm}^{-1} 1673,1625$ and 1600 [lit., ${ }^{16}$ $v($ film $) / \mathrm{cm}^{-1} 1672,1620$ and 1600]; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 219(\log \varepsilon$ 4.65), $248(\log \varepsilon 4.43)$ and $313(\log \varepsilon 3.84) ; \delta 1.46(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CMe}_{2}\right), 2.10\left(2 \mathrm{H}, \mathrm{t}, J 7,2-\mathrm{H}_{2}\right), 2.80\left(2 \mathrm{H}, \mathrm{t}, J 7,3-\mathrm{H}_{2}\right), 3.96(3 \mathrm{H}$, $\mathrm{s}, \mathrm{ArOMe}), 7.15(1 \mathrm{H}, \mathrm{d}, J 1,8-\mathrm{ArH}), 7.32(1 \mathrm{H}, \mathrm{dd}, J 8$ and 1 , 6-ArH), 7.56 ($1 \mathrm{H}, \mathrm{d}, J 8,9-\mathrm{ArH}), 7.94(1 \mathrm{H}, \mathrm{d}, J 8,10-\mathrm{ArH})$ and $9.26(1 \mathrm{H} . \mathrm{d}, J 8,5-\mathrm{ArH})\left[\right.$ lit., ${ }^{16} \delta\left(\mathrm{CCl}_{4}\right) 1.4(\mathrm{~s}, 6 \mathrm{H}), 1.99(\mathrm{~m}$, $2 \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 6.90-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.73(\mathrm{~d}, 1 \mathrm{H}$, $J 8)$ and $9.10(\mathrm{~d} .1 \mathrm{H}, J 10)]$.

1,2,3,4-Tetrahydro-1,1-dimethylphenanthrene-4-one 6f.-The compound $4 f(300 \mathrm{mg}, 1.42 \mathrm{mmol})$ was converted in the same way as described for $\mathbf{6 a}$ into the title compound $\mathbf{6 f}(271 \mathrm{mg}, 85 \%$), b.p. ${ }^{150-155}{ }^{\circ} \mathrm{C}(0.1 \mathrm{mmHg})$ (Found: C, $85.75 ; \mathrm{H}, 7.35$. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}$ requires $\mathrm{C}, 85.67 ; \mathrm{H}, 7.19 \%$); $v_{\max } / \mathrm{cm}^{-1} 1672,1627$ and $1600 ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 219(\log \varepsilon 4.52), 248(\log \varepsilon 4.30)$ and $315(\log \varepsilon 3.86) ; \delta 1.49\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 2.14(2 \mathrm{H}, \mathrm{t}, J 7$, $\left.2-\mathrm{H}_{2}\right), 2.90\left(2 \mathrm{H}, \mathrm{t}, J 7,3-\mathrm{H}_{2}\right), 7.52-7.74(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.87(1 \mathrm{H}$, br d, 10-ArH), $8.06(1 \mathrm{H}, \mathrm{d}, J 8,9-\mathrm{ArH})$ and $9.33(1 \mathrm{H}, \mathrm{d}, J 8$, 5-ArH).

Acknowledgements

The C.S.I.R., New Delhi, is gratefully acknowledged for the award of a Senior Research Fellowship to S. G. and an Associateship to B. K. B.

References

1 D. Nasipuri and A. K. Mitra, J. Chem. Soc., 1973, 285.
2 H. M. Chang, K. P. Cheng, T. F. Choang, H. F. Chow, K. Y. Chui, P. M. Hon, F. W. L. Tan, Y. Yang, Z. P. Zhong, C. M. Lee, H. L. Sham, C. F. Chan, Y. X. Cui and H. N. C. Wong, J. Org. Chem., 1990, 55, 3537.
3 H. Kakisawa, M. Tateishi and T. Kusumi, Tetrahedron Lett., 1968, 3783.

4 A. C. Baillie and R. H. Thomson, J. Chem. Soc. (C), 1968, 48.
5 T. Hayashi, H. Kakisawa, H.-Y. Hsu and Y. P. Chen, J. Chem. Soc., Chem. Commun., 1970, 299.
6 Y. Okumura, H. Kakisawa, M. Kato and Y. Hirata, Bull. Chem. Soc. Jpn., 1961, 34, 895.
7 B. E. Cross, M. R. Firth and R. E. Markwell, J. Chem. Soc., Perkin Trans. I, 1979, 2930.
8 S. Deb, G. Bhattacharjee and U. R. Ghatak, J. Chem. Soc., Perkin Trans. 1, 1990, 1453.
9 B. K. Banik, A. K. Chakraborti and U. R. Ghatak. J. Chem. Res. (S), 1986, 406; J. Chem. Res. (M), 1986, 3391
10 B. K. Banik, S. Ghosh and U. R. Ghatak, Tetrahedron, 1988, 44, 6947.
11 B. K. Banik and U. R. Ghatak, Synh. Commun., 1989, 19, 1351.
12 S. Ghosh, B. K. Banik and U. R. Ghatak, J. Chem. Soc., Perkin Trans. 1, preceding paper.
13 A. K. Chakraborti, S. K. Alam, P. C. Chakraborti, R. Dasgupta, J. Chakravarty, U. R. Ghatak, A. Kabiraj and S. G. Biswas, J. Chem. Soc., Perkin Trans. 1, 1986, 1243.
14 W. F. Short and H. Wang, J. Chem. Soc., 1951, 2979.
15 M. Ghosal, S. Bhattacharyya and D. Mukherjee, Tetrahedron Letl., 1989, 30, 3469.
16 S. Bhattacharyya and D. Mukherjee, Tetrahedron Lelt., 1982, 23, 4175.

17 (a) R. Rathore, N. Saxena and S. Chandrasekaran, Synth. Commun., 1986, 16, 1493; (b) J. L. Maurer, F. Berchier, A. J. Serino, C. B. Knobler and M. F. Hawthorne, J. Org. Chem., 1990, 55, 838.

Paper 1/01716K
Received 12th April 1991
Accepted 27th August 1991

